
The Octet Rule Revisited

Generally, only the outer or valence electrons (i.e. those in the highest 'n' level) are involved in chemical change. All other electrons are considered to be 'inner shell' or core electrons.

Energy level	Maximum # e's	Valence e's	Valence sublevels	Core sublevels

lt appears t	hat there are alw	ays onlyin the	in the		
the	and	are filled in they ar	are filled in they are actually part of the		
	•	electrons are always () electrons		
	•	electrons are always () electrons		

This accounts for our observations that elements in the 'd' or 'f' blocks of the Periodic Table have similar properties (same valence electrons) whereas elements in the 'p' bock are very different (different valence electrons).

