Review Question 7

	NH _{3 (aq)}	+ H ₂ O _(I)	<->	NH_4^+	(aq)	+ OH	(aq)
Initial	0.25		C).25			
Change	- x			+x		+x	
Eq'm	0.25 – x		0.2	25 + x		х	

At this point you can solve this one of two ways: like a normal equilibrium questions, using method of approximation or using a modification of the Henderson-Hasselback equation.

Method 1	Method 2
$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} = 1.8 \times 10^{-5}$ assumption	If we modify the eq`m expression: $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$
$1.8 \times 10^{-5} = (0.25) [OH^{-1}]$ (0.25) $[OH^{-1}] = 1.8 \times 10^{-5}$ $pOH = -\log [OH^{-1}] = -\log (1.8 \times 10^{-5}) = 4.745$ pH = 14 - pOH = 9.255	get $K_b \times [NH_3] / [NH_4^+] = [OH^-]$ then take log of both sides $-\log [OH^-] = -\log K_b \times [NH_3] / [NH_4^+]$ Then apply two log rules: $pOH = -\log K_b \times \log [NH_4^+] / [NH_3]$ now sub in $pOH = -\log(1.8 \times 10^{-5}) + \log (0.25)/(0.25)$ pOH = 4.745 pH = 14 - pOH = 9.255

Part b: add add 0.10 mol HCl

You know that the addition of 0.10 mol HCl will react with the OH- and remove 0.10 mol of OH⁻ from solution. This will cause the eq⁺ m to shift left and will change the amounts of NH₃ and NH₄⁺.

	$NH_{3 (aq)} + H_{2}O_{(l)} <->$	$NH_4^+_{(aq)} + OH_{(aq)}^-$	
Initial []	0.25	0.25	
Initial moles (1 L)	0.25	0.25	
Change in moles	-0.1	+0.1	due to the reaction with 0.10 mol HCl
New initial moles	0.15	0.35	
New initial []	0.15	0.35	now this can be done exactly like part a using either method

 $pOH = pK_b + log([NH_4^+] / [NH_3])$

 $pOH = -\log (1.8 \times 10^{-5}) + \log (0.35 / 0.15)$

pOH = 4.745 + 0.368

pOH = 5.113

pH = 14 – pOH = 8.887