Electrochemistry Assign oxidation numbers for each of the atoms in the following compounds: | Species | Oxidation Number | Species | Oxidation Number | |--|------------------|--------------------------------|------------------| | HCIO | | KClO₃ | | | MnO ₂ | | PbO ₂ | | | PbSO ₄ | | K ₂ SO ₄ | | | NH ₄ ⁺ | | Na ₂ O ₂ | | | FeO | | Fe ₂ O ₃ | | | NaIO ₄ | | Fe ₃ O ₄ | | | Cr ₂ O ₇ ²⁻ | | MnO ₄ ²⁻ | | | NO ₃ | | ClO ₃ | | Assign oxidation numbers for all atoms in the following table, determine which element has a change in its oxidation number, and state whether it is oxidation or reduction. | Reactant | Product | Change in Oxidation Number | Oxidation | Reduction | |--|--------------------------------|----------------------------|-----------|-----------| | MnO ₄ | MnO ₄ ²⁻ | | | | | K | K ⁺ | | | | | N ₂ | NH ₃ | | | | | NH ₃ | N ₂ O | | | | | P ₄ O ₁₀ | P ₄ O ₆ | | | | | SO ₄ ²⁻ | SO ₃ ²⁻ | | | | | HClO ₄ | HCI | | | | | O ₂ | O ²⁻ | | | | | Cr ₂ O ₇ ²⁻ | Cr ³⁺ | | | |